
High-Performance Computing

Exercises

Prof. Dr. Jan Dünnweber

Research Unit on Distributed Systems and Operating Systems

Faculty of Computer Science and Mathematics

Regensburg University of Applied Sciences

Process Management

1. Get back to your data.Matrix-code and create an abstract class
Process for managing parallel processes.

2. Allow subclasses of the Process-class to refer to a matrix and to a
computation rule (specified via constructor parameters).

3. Provide a complete()-method in the Process-class, allowing the
caller to coordinate processes via a barrier (implemented as a
CountDownLatch)

Prof. Dr. Jan Dünnweber, Folie 2 von 5 YHPC

Data Partitioning

1. Extend your Matrix-class by efficient equals(), clone()
and hashCode()-implementations, i. e.,

◮ equals() should terminate once the first unequal elements are
detected.

◮ clone() should copy matrices row-by-row using either
Collections.copy() or System.arraycopy().

◮ hashCode() should preferably yield different results for unequal
matrices without processing every single matrix element. One possible
way to achieve this is computing the trace of the matrix.

2. Implement processUL() and processLR()-methods which
(analogously to the process()-method from the last lab) process
only the upper-left or the lower-right triangular submatrix of a square
matrix.

note:

you can ignore the fact that trace(), processLR() and processUL()

will not work correctly for rectangular matrices (which have no main diagonal).
However, ensure that they won’t throw IndexOutOfBoundsExceptions for any matrix.

(process only the largest enclosed square matrix!)

Prof. Dr. Jan Dünnweber, Folie 3 von 5 YHPC

Testing the Decomposition

1. For testing purposes write an experiments.Duplication-class that
implements the Function-interface such that the compute()-method
duplicates all matrix elements.

2. Write two new methods inside the experiments.Parallel-class:
◮ processMatrix takes a Matrix and a Function parameter and maps

all elements sequentially in the overridden body()-method of a single
Process-Instance. The return value should be the Process’ runtime.

◮ processTriangular gets the same job done by a team of two
processes, one mapping the upper-left elements, while the other maps
the lower-right part.

3. Implement a JUnit test case decompositionTest() that creates a
random test-matrix, copies it using the clone()-method and
duplicates all elements of both matrices: test-elements via
processMatrix() and copy-elements via processTriangular.
Prove that the decomposition works by comparing the result matrices
via the equals()-method.

Prof. Dr. Jan Dünnweber, Folie 4 von 5 YHPC

Measuring Scalability

1. Move the compute()-method that we implemented in the last lab for
repeatedly computing the identity function to generate synthetic load
into a separate Identity-class inside the package experiments.

2. Create a 100 × 100 random matrix and run the sequential
processMatrix()-method simulating load via
experiments.Identity and save the computation time T1.

3. Map the (unchanged) result matrix again by running
experiments.Identity in parallel on its upper-left and its
lower-right part using the processTriangular()-method and save
the computition time Tp.

4. Compute the measured speedup S(p): Divide the sequential runtime
by the parallel runtime and output the result.

5. Determine the efficiency of your platform as S(p)/p.

Prof. Dr. Jan Dünnweber, Folie 5 von 5 YHPC

