
High-Performance Computing

Exercises

Prof. Dr. Jan Dünnweber

Research Unit on Distributed Systems and Operating Systems

Faculty of Computer Science and Mathematics

Regensburg University of Applied Sciences



Solving Equation Systems in Parallel

Exercise 1: Include the Jacobi-Method from lecture 5 in your matrix code

Jacobi-Algorithm in Java

public void solve(Vector b, Vector xn, Vector xi, int iter) {
for (int approx = 0; approx < iter; ++approx) {

for (int i = 0; i < y; ++i) {
double sum = 0.0;
for (int j = 0; j < x; ++j)
if (i != j)

sum += get(j, i) ∗ xn.get(j);
xi.set(i, (b.get(i) − sum) / get(i, i)); }

xi.copy(xn); } }
// ...

Use “MatLab” c© to verify that your code computes

xm+1,i =
1

aii



bi −

n
∑

j=1,j 6=i

aijxm,j



 , i = 1, . . . , n

Parallelize your code line-by-line and perform some speedup
measurements (process some blocks of lines sequentially)

Prof. Dr. Jan Dünnweber, Folie 2 von 3 YHPC



The SOR-Method

Exercise 2: SOR can be implemented as follows

Successive Over-Relaxation

public final void runSOR(double omega, int nIter) {
double omegaOverFour = omega ∗ 0.25;
double oneMinusOmega = 1.0 − omega;
for (int p = 0; p < nITer; ++p)

for (int i = 1; i < m.x − 1; i++)
for (int j = 1; j < m.y−1; j++)
m.set(i, j, omegaOverFour ∗ (m.get(i − 1,j)

+ m.get(i + 1, j) + m.get(i, j − 1)
+ m.get(i, j + 1) + oneMinusOmega ∗ m.get(i, j); }

Verify that the code works by implementing a JUnit test that
compares the results of the Jacobi and the SOR-approximation
Describe the corresponding polytope and try to find an appropritate
schedule and placement to perform a space-time mapping manually

Port the loop nest to C (use arrays to represent the matrices) and run
Pluto from pluto-compiler.sourceforge.net to generate a
parallel version and conduct some performance experiments

Prof. Dr. Jan Dünnweber, Folie 3 von 3 YHPC


