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Solving Equation Systems in Parallel

Exercise 1: Include the Jacobi-Method from lecture 5 in your matrix code

Jacobi-Algorithm in Java

public void solve(Vector b, Vector xn, Vector xi, int iter) {
for (int approx = 0; approx < iter; ++approx) {

for (int i = 0; i < y; ++i) {
double sum = 0.0;
for (int j = 0; j < x; ++j)
if (i != j)

sum += get(j, i) ∗ xn.get(j);
xi.set(i, (b.get(i) − sum) / get(i, i)); }

xi.copy(xn); } }
// ...

Use “MatLab” c© to verify that your code computes
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Parallelize your code line-by-line and perform some speedup
measurements (process some blocks of lines sequentially)
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The SOR-Method

Exercise 2: SOR can be implemented as follows

Successive Over-Relaxation

public final void runSOR(double omega, int nIter) {
double omegaOverFour = omega ∗ 0.25;
double oneMinusOmega = 1.0 − omega;
for (int p = 0; p < nITer; ++p)

for (int i = 1; i < m.x − 1; i++)
for (int j = 1; j < m.y−1; j++)
m.set(i, j, omegaOverFour ∗ (m.get(i − 1,j)

+ m.get(i + 1, j) + m.get(i, j − 1)
+ m.get(i, j + 1) + oneMinusOmega ∗ m.get(i, j); }

Verify that the code works by implementing a JUnit test that
compares the results of the Jacobi and the SOR-approximation
Describe the corresponding polytope and try to find an appropritate
schedule and placement to perform a space-time mapping manually

Port the loop nest to C (use arrays to represent the matrices) and run
Pluto from pluto-compiler.sourceforge.net to generate a
parallel version and conduct some performance experiments
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